مطالعه تأثیر موقعیت عملگر جت مصنوعی در به تأخیر انداختن واماندگی ایرفویل مافوق بحرانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ‌التحصیل کارشناسی ارشد مهندسی هوافضا، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

2 دکتری مهندسی هوافضا، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

3 دانشجوی دکتری مهندسی هوافضا، پژوهشگاه هوافضا، وزارت علوم، تحقیقات و فناوری

چکیده

هدف از مطالعه حاضر به تعویق انداختن واماندگی و افزایش عملکرد آیرودینامیکی ایرفویل مافوق بحرانی NASA GAW-(2) با استفاده از عملگر جت مصنوعی است. در این پژوهش، حرکت دیافراگم و جریان خروجی حاصل از عملگر جت مصنوعی به صورت عددی و با استفاده از نرم‌افزار فلوئنت شبیه‌سازی شده است. شبیه سازی جریان به وسیله حل معادلات ناویر-استوکس در شرایط جریان آشفته و ناپایا در محدوده جریان زیرصوت انجام شد. قبل از شبیه‌سازی عملگر جت مصنوعی، ابتدا جریان در اطراف ایرفویل غیرکنترلی به صورت عددی شبیه‌سازی شده و خصوصیات آیرودینامیکی ایرفویل با نتایج تجربی موجود مقایسه و اعتبارسنجی شده است. در گام بعد تأثیر عملگر جت مصنوعی در به تأخیر انداختن جدایش ناحیه واماندگی و افزایش عملکرد آیرودینامیکی به صورت عددی شبیه‌سازی شد. از بین پارامترهای مؤثر در کارایی عملگر، محل قرارگیری عملگر روی ایرفویل مورد مطالعه عددی قرار گرفته است. در این پژوهش، شبیه‌سازی جت مصنوعی در سه موقعیت 12، 20 و 30 درصد طول وتر ایرفویل برای شناسایی مکان بهینه روی ایرفویل انجام شد. از بین سه موقعیت مورد مطالعه مکان 30% در همه زوایای حمله توانست ضریب برآی بیشتری نسبت به بیشینه ضریب برآ در حالت غیرکنترلی به دست دهد. بیشترین مقدار ضریب برآ با استفاده از کنترل جریان در زاویه حمله 18 درجه با 6% افزایش ضریب برآ نسبت به حالت غیرکنترلی دیده می‌شود. همچنین ضریب پسا در موقعیت 30% طول وتر و زاویه حمله 20 درجه، 26% نسبت به حالت غیرکنترلی کاهش یافت.

کلیدواژه‌ها


  • S. Taleghani, A. Shadaram, M. Mirzaei, “Effects of duty cycles of the plasma actuators on improvement of pressure distribution above a NLF0414 airfoil,” IEEE Transactions on Plasma Science, vol. 40, no. 5, 1434-1440, 2012.
  • Salmasi, A. Shadaram and A. Shams Taleghani, “Effect of plasma actuator placement on the airfoil efficiency at poststall angles of attack,” IEEE Transactions on Plasma Science; vol. 41, no. 10, pp. 3079-3085.
  • Shams Taleghani, A. Shadaram and M. Mirzaei, “Effects of duty cycles of the plasma actuators on improvement of the pressure distribution over NLF0414 airfoil,” Modares Mechanical Engineering, vol. 12, no. 1, pp. 106-114, 2012. (in Persian )
  • Salmasi, A. Shadaram, M. Mirzaei and A. Shams Taleghani, “Numerical and experimental investigation on the effect of a plasma actuator on NLF0414 airfoils efficiency after the stall,” Modares Mechanical Engineering, vol. 12, no. 6, pp. 104-116, 2013. (in Persianفارسی )
  • Shams Taleghani, A. Shadaram and M. Mirzaei, “Experimental investigation of active flow control for changing stall angle of a NACA0012 airfoil using plasma-actuator,” Fluid Mechanics and Aerodynamics Journal, vol. 1, pp. 89-97, 2012. (in Persian )
  • Mohammadi, A. S. Taleghani, "Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil," Arab J Sci Eng, Vol. 39, pp. 2363–2370, 2014.
  • Mirzaei, A. S. Taleghani and A. Shadaram, "Experimental study of vortex shedding control using plasma actuator, Applied Mechanics and Materials, Vol. 186, pp. 75-86, 2012. Trans Tech Publications Ltd.
  • Shams Taleghani, "Numerical and Parametric investigation of suction over a cylinder for reduction of flow unsteadiness and vortex,  Journal Of Mechanical Engineering, Vol. 49, No. 3 (88), pp.183-192, 2019. (in Persian)
  • Abdolahipour, M. Mani and A. Shams Taleghani, "Enhancing the high-lift properties of a supercritical wing by means of a modulated pulse jet actuator," Tech. Phys. Lett. (Berlin: Springer) in press, 2022. (https://doi.org/10.21883/PJTF.2022.01.51869.18999)
  • Abdolahi Poor, A. Mardani, S. A. S. Sh. Taleghani, "Effects of pulsed counter flow jets on aerothermodynamics performance of a Re-Entry capsule at supersonic flow," Aerospace Knowledge and Technology Journal, vol. 5, no. 1, pp. 55-65, 2016 (in Persian)
  • M. Sheikholeslam Noori, M. Taeibi Rahni and S. A. Shams Taleghani, "Numerical analysis of droplet motion over a flat plate due to surface acoustic waves, Microgravity Science and Technology," Vol. 32, no. 4, pp.647-660, 2020.
  • Sheikholeslam Noori, A. Shams Taleghani and M. Taeibi Rahni, “Surface acoustic waves as control actuator for drop removal from solid surface,” Fluid Dynamics Research, vol. 53, no. 4, 045503, 2021.
  • Sheikholeslam Noori, A. Shams Taleghani and M. Taeibi Rahni, “Phenomenological investigation of drop manipulation using surface acoustic waves,” Microgravity Science and Technology, vol. 32, no. 6, pp.1147-1158, 2020.
  • Sheikholeslam Noori, M. Taeibi Rahni and A. Shams Taleghani, “Effects of contact angle hysteresis on drop manipulation using surface acoustic waves,” Theoretical and Computational Fluid Dynamics, vol. 34, no. 1 pp.145-162, 2020.
  • Ghanbari Motlagh, S. Abdolahipour, A. Shams Taleghani, “Flow control by magnetohydrodynamic field method at the supersonic air intake,”  Aerospace Knowledge and Technology Journal, vol. 9, no. 1, pp. 157-170, 2020. (in Persia )
  • Shams taleghani, A. Ghanbari Motlagh, S. Abdolahipour, "Numerical study of the effects of magnetohydrodynamic field on shock-induced flow separation," Fluid Mechanics and Aerodynamics Journal, vol. 9, no. 2, pp. 17-28, 2021. (in Persian)
  • Yadegari and A. Seyed Shams Taleghani, "Porous media applications in shock attenuation on suction side of an airfoil," Aerospace Knowledge and Technology Journal, vol. 3, no. 1, 2014, 61-71, 2014. (in Persian)
  • Yadegari and A. Shams Taleghani, "A parametric study for passive control of shock-boundary layer interaction of an airfoil with porous media in a transonic flow, Fluid Mechanics and Aerodynamics Journal, Vol. 3, No. 4, pp.73-86, 2015. (in Persian)
  • Yadegari, A. Shams Taleghani, "Numerical study of shock-boundary layer interaction on an airfoil with cavity and porous surface: Parametric investigation in a transonic flow," Journal of Solid and Fluid Mechanics, Vol. 6, no. 2, pp. 271-284, 2016. (in Persian)
  • S. Taleghani, A. Shadaram, M. Mirzaei and S. Abdolahipour, “Parametric study of a plasma actuator at unsteady actuation by measurements of the induced flow velocity for flow control,” J Braz. Soc. Mech. Sci. Eng., vol. 40, no. 4,  pp.1-13, 2018.
  • Abdolahipour, M. Mani and A. Shams Taleghani, “Parametric study of a frequency-modulated pulse jet by measurements of flow characteristics,” Physica Scripta, vol. 96, no. 12, 2021.
  • Shams Taleghani, A. Shadaram and M. Mirzaei, “Experimental investigation of geometric and electrical characteristics by measurements of the induced flow,” Modares Mechanical Engineering, vol. 12, no. 5, pp. 132- 145, 2012. (in Persia )
  • N. Cattafesta and M. Sheplak, “Actuators for active flow control, annu,” Rev. Fluid Mech., vol. 43, pp. 247-72, 2011.
  • Gad-el-Hak, "Flow control: passive, active, and reactive flow management", Cambridge University Press, 2007.
  • C. Lin, "Review of research on low-profile vortex generators to control boundary-layer separation," Progress in Aerospace Sciences, vol. 38, pp. 389-420, 2002.
  • J. Walsh, "Riblets as a viscous drag reduction technique," AIAA journal, vol. 21, pp. 485-486, 1983.
  • Rasheed, H. Hornung, A. Fedorov, and N. Malmuth, "Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface," AIAA Journal, vol. 40, pp. 481-489, 2002.
  • R. Joslin, D. N. Miller and F. K. Lu, "Fundamentals and applications of modern flow control," American Institute of Aeronautics and Astronautics, 2000.
  • Mohseni and R. Mittal, Synthetic Jets: Fundamentals and Applications: CRC Press, 2014.
  • Smith, M. Trautman and A. Glezer,  1999. "Controlled interactions of adjacent synthetic jets," In 37th Aerospace Sciences Meeting and Exhibit (p. 669).
  • Qin, Y. Zhu, P. Ashill and S. Shaw. "Active control of transonic aerodynamics using suction, blowing, bumps and synthetic jets." In 18th Applied Aerodynamics Conference, p. 4329. 2000.
  • Rathay, M. Amitay, & E. Whalen, "Flow physics associated with the performance enhancement of a vertical tail using synthetic jet actuators, " AIAA Paper, 2797, 2013.
  • W. Hoeijmakers and D. J. Wirtz, "Experimental study of flow field airfoil with synthetic jets for flow separation control" In 2018 Flow Control Conference(p. 3686), 2018.
  • Lindstrom, A., & Amitay, M. (2019). "Effect of orifice geometry on synthetic jet evolution. AIAA Journal, vol. 57, no. 7, pp. 2783-2794.
  • Mu, Q. Yan, W. Wei and P. E. Sullivan, "Synthetic jet performance for different axisymmetric cavities analyzed with three-dimensional lattice-boltzmann method," AIAA Journal, vol. 56, no. 6, pp. 2499-2505, 2018.
  • Ishibashi, and K. Miyaji, "Detached eddy simulations of a synthetic jet for a high-angle-of-attack airfoil-influence of the jet angle. In 52nd Aerospace Sciences Meeting,p. 0768, 2014.
  • Zaman and D. Culley, "A study of stall control over an airfoil using synthetic jets," In 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 98, 2006.
  • Yen and N. Ahmed. “Role of synthetic jet frequency & orientation in dynamic stall vorticity creation,” In 31st AIAA Applied Aerodynamics Conference(p. 3165), 2013.
  • Bottomley and A. Packwood. “Experimental investigation of high-frequency-actuation synthetic jet flow control,” In 52nd Aerospace Sciences Meeting(p. 0400), 2014.
  • Ono, Y. Kameya, M. Motosuke and Honami, S. (2015). “A combined type of a flow control actuator composed of the synthetic jet and vortex generator”. In 53rd AIAA Aerospace Sciences Meeting(p. 0806).
  • Tang, G. and Agarwal, R. K. (2018). “Numerical simulation of flow control over nasa hump with uniform blowing jet and synthetic jet,” In 2018 Flow Control Conference(p. 4017).
  • Durrani and B. A. Haider, "Study of stall delay over a generic airfoil using synthetic jet actuator," in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, p. 943, 2011.
  • Bauer, P. Garabedian, D. Korn and A. Jameson, supercritical wing sections II: a handbook vol. 108, Springer Science & Business Media, 2012.
  • Abdolahipour, M. Mani and A. Shams Taleghani, “Experimental investigation of aerodynamic characteristics of a supercritical two-element high-lift airfoil,” Aerospace Knowledge and Technology Journal, vol. 10, no. 1, 2021. (in Persian)
  • Fluent, "6.3 user’s guide," Fluent Inc, 2006.
  • J. McGhee, W. D. Beasley and D. M. Somers, "Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications," 1975.