بررسی ارتعاشات آزاد و پایداری ایروالاستیک پانل ‏مخروطی ناقص در جریان مافوق صوت

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی هوافضا، دانشگاه علوم و فناوی هوایی شهید ستاری، تهران، ایران

2 استادیار، دانشکده مهندسی هوافضا، دانشگاه علوم و فنون هوایی شهید ستاری، تهران، ایران

چکیده

در پژوهش حاضر بر آنیم که مسئله ارتعاشات آزاد و پایداری آیروالاستیک پانل مخروطی ناقص در جریان مافوق صوت را بررسی نماییم. با به‌کارگیری اصل هامیلتون معادلات حرکت و شرایط مرزی متناظر با آن بدست می آید. پایداری آیروالاستیک با در نظر گرفتن تئوری کلاسیک (لاو) پوسته‌ها و تئوری خطی پیستون برای مدل سازی جریان ‏سیال مافوق، بدست آورده شده ‏است. با استفاده از روش گالرکین، معادلات کوپل سازه-سیال به معادلات دیفرانسیلی معمولی تبدیل می شود. با حل و تحلیل مسئله مقدار ویژه مقادیر فرکانس و دمپینگ سیستم برای مقادیر مختلف جریان مافوق صوت حاصل می شود. نتایج با استفاده از داده های عددی و نظری موجود اعتباری سنجی می شوند.‏ بررسی ها برای پوسته های مخروطی با هندسه های مختلف انجام شده است.‏‎ ‎‏مرزهای ناپایداری فلاتر برای پانل مخروطی ناقص با زوایای نیم‌راس، زوایای کمان و ضخامت های مختلف بدست می آید. در همه موارد نوع ناپایداری از نوع فلاتر کوپل خواهد بود.

کلیدواژه‌ها


  [1] M. Amabili, Nonlinear vibrations and stability of shells and plates, Cambridge University Press, 2008.
 [2] E.H. Dowell, Aeroelasticity of plates and shells, Springer Science & Business Media, 1974.
 [3] A.W. Leissa, Vibration of shells, Scientific and Technical Information Office, National Aeronautics and Space …, 1973.
[4]  S.S. Rao, Vibration of continuous systems, Wiley Online Library, 2007.
 [5] K. Lam, H. Li, T. Ng, C. Chua, Generalized differential quadrature method for the free vibration of truncated conical panels, Journal of Sound and Vibration, 251(2) (2002) 329-348.
[6]  X. Zhao, Q. Li, K. Liew, T. Ng, The element-free kp-Ritz method for free vibration analysis of conical shell panels, Journal of Sound and Vibration, 295(3-5) (2006) 906-922.
 [7] D.S. Kumar, N. Ganesan, Dynamic analysis of conical shells conveying fluid, Journal of Sound and Vibration, 310(1-2) (2008) 38-57.
[8]  A. Lakis, P. Van Dyke, H. Ouriche, Dynamic analysis of anisotropic fluid-filled conical shells, Journal of fluids and structures, 6(2) (1992) 135-162.
[9]  G. Ulitin, The vibrations of a conical shell filled with a variable volume of fluid, Journal of Mathematical Sciences, 74(4) (1995) 1185-1187.
 [10] M.J. Jhung, J.C. Jo, K.H. Jeong, Modal analysis of conical shell filled with fluid, Journal of mechanical science and technology, 20(11) (2006) 1848-1862.
[11]  L. Carter, R. Stearman, Some aspects of cylindrical shell panel flutter, AIAA Journal, 6(1) (1968) 37-43.
[12]  G.W. Barr, R.O. Stearman, Aeroelastic stability characteristics of cylindrical shells considering imperfections and edge constraint, AIAA Journal, 7(5) (1969) 912-919.
[13]  M. Singha, M. Mandal, Supersonic flutter characteristics of composite cylindrical panels, Composite Structures, 82(2) (2008) 295-301.
[14]  H. Haddadpour, H. Navazi, F. Shadmehri, Nonlinear oscillations of a fluttering functionally graded plate, Composite Structures, 79(2) (2007) 242-250.
[15]  H. Navazi, H. Haddadpour, Aero-thermoelastic stability of functionally graded plates, Composite Structures, 80(4) (2007) 580-587.
 [16] H. Haddadpour, S. Mahmoudkhani, H. Navazi, Supersonic flutter prediction of functionally graded cylindrical shells, Composite Structures, 83(4) (2008) 391-398.
 [17] S. Mahmoudkhani, H. Haddadpour, H. Navazi, Supersonic flutter prediction of functionally graded conical shells, Composite Structures, 92(2) (2010) 377-386.
[18]  A. Davar, H. Shokrollahi, Flutter of functionally graded open conical shell panels subjected to supersonic air flow, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(6) (2013) 1036-1052.
 [19] Y.X. Hao, Y. Niu, W. Zhang, S.B. Li, M.H. Yao, A.W. Wang, Supersonic flutter analysis of FGM shallow conical panel accounting for thermal effects, Meccanica, 53(1) (2018) 95-109.
[20]  S.W. Yang, W. Zhang, Y.X. Hao, Y. Niu, Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances, Thin-Walled Structures, 142 (2019) 369-391.
 [21] M. Bakhtiari, A.A. Lakis, Y. Kerboua, Nonlinear supersonic flutter of truncated conical shells, Journal of Mechanical Science and Technology, 34(4) (2020) 1375-1388.
[22]  Y. Xue, J. Li, F. Li, Z. Song, Flutter and Thermal Buckling Properties and Active Control of Functionally Graded Piezoelectric Material Plate in Supersonic Airflow, Acta Mechanica Solida Sinica, 33(5) (2020) 692-706.
[23]  J. Wei, Z. Song, F. Li, Superior aeroelastic behaviors of axially functional graded cylindrical shells in supersonic airflow, Journal of Fluids and Structures, 96 (2020) 103027.
[24]  M. Rahmanian, M. Javadi, A unified algorithm for fully-coupled aeroelastic stability analysis of conical shells in yawed supersonic flow to identify the effect of boundary conditions, Thin-Walled Structures, 155 (2020) 106910.
 [25] M. Rahmanian, M. Javadi, Supersonic Aeroelasticity and Dynamic Instability of Functionally Graded Porous Cylindrical Shells Using a Unified Solution Formulation, International Journal of Structural Stability and Dynamics, 20(12) (2020) 2050132.
[26]  H. Ashley, G. Zartarian, Piston theory-a new aerodynamic tool for the aeroelastician, Journal of the Aeronautical Sciences, 23(12) (1956) 1109-1118.
[27]   M. Akbari, Y. Kiani, M. Aghdam, M. Eslami, Free vibration of FGM Lévy conical panels, Composite Structures, 116 (2014) 732-746.
[28]  R. Pidaparti, H.T. Yang, Supersonic flutter analysis of composite plates and shells, AIAA journal, 31(6) (1993) 1109-1117.
[29]  T. Ueda, S. Kobayashi, M. Kihira, Supersonic flutter of truncated conical shells, Trans. Jpn. Soc. Aeronaut. Space Sci, 20(47) (1977) 13-30.
[30]  S.C. Dixon, M.L. Hudson, Flutter, vibration, and buckling of truncated orthotropic conical shells with generalized elastic edge restraint, National Aeronautics and Space Administration, 1970.