تخمین عمر غلتک های نورد حلقه جهت شکل دهی اسپول موتور به روش مانسون-هالفورد-هایباخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه هوایی شهید ستاری- دانشکده هوافضا

2 دانشگاه علوم و فنون هوایی شهید ستاری، تهران،ایران

3 ایران، تهران، دانشگاه هوایی شهید ستاری، دانشکده هوافضا، گروه دینامیک پرواز و کنترل

چکیده

نورد حلقه جهت تولید حلقه­های بدون درز کاربرد دارد. این حلقه­ها دارای خواص منحصر به فرد از جمله جریان مناسب دانه­بندی و مقاومت در برابر رشد ترک می­باشند. اسپول موتور هواپیما معمولاً به این روش تولید می­شود. خرابی غلتک­ها در هنگام ساخت حلقه ممکن است منجر به خراب شدن ساختار و هندسه اسپول موتور و بروز حوادث جبران ناپذیر گردد. ارزیابی و بررسی عمر غلتک­های دستگاه نورد حلقه تاثیر مستقیمی بر پروفیل حلقه خروجی دارد لذا در این پژوهش به تخمین عمر غلتک­های نورد حلقه پرداخته شد. در ابتدا انواع روش­های تخمین عمر و روش­های ارزیابی آسیب تجمعی بررسی گردید. با شبیه سازی فرایند نورد حلقه جهت تولید یک نمونه اسپول موتور، تاریخچه بارگذاری غلتک­ها در طی فرایند استخراج شد. با توجه به تاریخچه بارگذاری مقدار تنش­های ایجاد شده در غلتک­ها در یک سیکل بارگذاری تعیین و در ادامه با کمک روش تنش- عمر و روش­های مختلف آسیب تجمعی، تخمین عمر انجام گردید. با توجه به نتایج حاصل از پژوهش مشخص گردید که غلتک اصلی با اعمال نیروهای ترمومکانیکی به طور قابل ملاحظه­ای تحت تاثیر تنش­های مکانیکی است. از سوی دیگر مندرل با اعمال نیروهای مذکور متاثر از تنش­های حرارتی است. در مجموع جهت افزایش عمر غلتک­ها و کاهش اثرات تنش­های ترمومکانیکی می­بایست یکنواختی دما در حین کارکرد در غلتک­ها حفظ شود لذا خنک­کاری مناسب تاثیر قابل ملاحظه­ای بر افزایش عمر خواهد داشت. در ضمن اثر تنش خمشی حاصل از شکل­دهی اسپول مورد نظر بر روی عمر مندرل قابل توجه نیست.

کلیدواژه‌ها


[1]          B. Hill, "Damage mechanism life assessment of high temperature component," 2nd, ASM International, 1989.
ا. استیون, ع. فاطمی, ر.استیونز و ه. اوتن, خستگی فلزات در مهندسی, ترجمه ا. موسوی., تهران: ویرایش دوم، پژوهشگاه نیرو, 1389.     [2]
[3]          j. Shigley, c. Mischke and r. Budynas, "Mechanical engineering design", 2004.
[4]          S. H. Zhang, W. H. Tian and L. Deng, "A novel yield criterion and its application to calculate the rolling force of a thick plate during hot rolling," Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 43, no. (2021). . , (1), 1-11.‏, pp. 1-11, 2021.
[5]          C. Du, Q. Pan, S. Chen and S. Tian, "Effect of rolling on the microstructure and mechanical properties of 6061-T6 DS-FSW plate," Materials Science and Engineering: A, vol. 772, 2020.
[6]          C. Xu, T. Wu, H. Yang, H. Wu and N. Kwok, "Study on vibration mechanism induced by skidding in pure rolling contact," Tribology International, vol. 154, 2021.
[7]          H. Sayadi and S. Serajzadeh, "Prediction of thermal responses in continuous hot strip rolling processes," Production Engineering, vol. 9, no. 1, pp. 79-86, 2015.
[8]          . D. Benasciutti, F. De Bona and M. G. Munteanu, "A harmonic one-dimensional element for non-linear thermo-mechanical analysis of axisymmetric structures under asymmetric loads: The case of hot strip rolling," Journal of Strain Analysis for Engineering Design, vol. 51, no. 7, pp. 518-531, 2016.
. ع. مراثی , ع. نگهبان برون و ا. براتی, "بررسی شبیه سازی دوبعدی نورد حلقه داغ و تأثیر پارامترهای مختلف بر روی فرایند شکل دهی اسپول موتور," نشریه علمی-پژوهشی مهندسی هوانوردی، سال 18، شماره 1، صفحات 75-92، 1395    [9]
[10]        F. Qayyum, M. Shah, S. Manzoor and M. Abbas, "Comparison of thermomechanical stresses produced in work rolls during hot and cold rolling of Cartridge Brass 1101," Materials Science and Technology, vol. 31, no. 3, pp. 317-324, 2015.
[11]        B. Koohbor, "Finite element modeling of thermal and mechanical stresses in work-rolls of warm strip rolling process," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 230, no. 6, pp. 1076-1086, 2016.
[12]        A. Escolán, J. Bielsa, H.-G. B., M. Jiménez, J. López and R. Allende, " Thermo-mechanical fatigue approach to predict tooling life in high temperature metal forming processes," International Journal of Material Forming, vol. 10, no. 4, pp. 535-545, 2017.
[13]        A. Negahban, . E. Barati and A. Maracy, "Evaluation of Thermo-mechanical stress in work rolls of ring rolling mill under thermal and mechanical loading," Journal of Computational Applied Mechanics, vol. 49, no. 2, pp. 323-334, 2018.
ع. نگهبان, ا. براتی, ع. مراثی و ن. وحدت آزاد, "تأثیر دمای اولیه و خنک‌کاری بر تنش‌ ترمومکانیکی غلتک‌های نورد حلقه," نشریه مهندسی مکانیک امیرکبیر سال 52، شماره 8، صفحات 21-30، 1398          [14]
[15]        K. Hu, F. Zhu, J. Chen, N. Noda, W. Han and Y. Sano, "Simulation of Thermal Stress and Fatigue Life Prediction of High Speed Steel Work Roll during Hot Rolling Considering the Initial Residual Stress," Metals, vol. 9, no. 9, p. 966, 2019.
[16]        F. Weidlich, A. P. V. Braga, d. Silva, L. G. D. B., M. B. Júnior and R. M. & Souza, "The influence of rolling mill process parameters on roll thermal fatigue," The International Journal of Advanced Manufacturing Technology, vol. 102, no. 5, pp. 2159-2171, 2019.
[17]        P. Palit, S. N. Patel, J. Mathur and S. & Shenoy, "Analysis of a Progressive Failure of a Work Roll in Hot Strip Mill," Journal of Failure Analysis and Prevention, vol. 19, no. 5‏, pp. 1297-1303, 2019.
[18]        M. Tolcha, H. Altenbach and G. Tibba, "Modeling creep-fatigue interaction damage and H13 tool steel material response for rolling die under hot milling," Engineering Fracture Mechanics, vol. 223, p. 106770, 2020.
[19]        B. Hadizadeh, A. Bahrami, A. Eslami, K. Abdian, M. Y. Araghi and M. Etezazi, "Establishing the cause of failure in continuous casting rolls," Engineering Failure Analysis, vol. 108, 2020.
[20]        M. H. R. Eslami, J. Ignaczak, N. Noda, N. Sumi and Y. Tanigawa, Theory of Elasticity and Thermal Stresses: Explanations, Problems and Solutions (Solid Mechanics and Its Applications, vol. 197), Dordrecht: Springer, 2013.
[21]        A. Fatemi and L. Yang, "Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials," International journal of fatigue, vol. 20, no. 1, pp. 9-34, 1998.
[22]        T. Haihach, "Analytical Strength Assessment of components in Mechanical Engineering. FKM-Guide line," pp. 57-69, 2003.
[23]        E. Haibach, " Modified linear damage accumulation hypothesis for consideration of the fatigue loss with progressive damage," Laboratory for operational strength., 1970.
[24]        L. YL., P. J., H. R. and B. M., Fatigue testing and analysis: theory and practice, Butterworth-Heinemann, 2005.
[25]        M. S., F. J. and E. C.e., " Application of a double linear damage rule to cumulative fatigue," InFatigue Crack Propagation-ASTM Internationa, Jan 1967.
[26]        A. Negahban, E. Barati and A. Maracy, "Evaluation of thermo-mechanical stress in work rolls of ring rolling mill under thermal and mechanical loading," Journal of Computational Applied Mechanics, vol. 49, no. 2, pp. 323-334, 2018.
[27]        N. Dowling, C. Calhoun and A. Arcari, "Mean stress effects in stress‐life fatigue and the Walker equation," Fatigue & Fracture of Engineering Materials & Structures, vol. 32, no. 3, pp. 163-179, 2009.
[28]        Y. Lee, M. Barkey and H. Kang, Metal fatigue analysis handbook: practical problem-solving techniques for computer-aided engineering, Elsevier, 2011.
[29]        T. Philip, "ESH: a means of improving transverse mechanical properties in tool and die steels," Metals Technology, vol. 2, no. 1, pp. 554-564, 1975.
[30]        J. Benedyk, high performance alloys database(H-13), 2008.