مطالعه تجربی به کارگیری طرح جدید روزنه لوبیایی شکل در خنک کاری لایه ای

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه علوم و فنون هوایی شهید ستاری

2 دانشکده تحصیلات تکمیلی، دانشگاه علوم و فنون هوایی شهید ستاری

10.22034/joae.2023.171285

چکیده

شکل روزنه جت به شدت روی اثربخشی خنک کاری لایه ای تیغه های توربین اثرگذار است. شکل روزنه باید به گونه ای طراحی شود که توزیع مناسبی از سیال خنک کننده روی سطح را ایجاد کند و نقاط داغ تشکیل نشود. در تحقیق حاضر، عملکرد خنک کاری طرح جدید هندسه روزنه لوبیایی شکل برای روزنه جت خنک کننده به طور تجربی با استفاده از روش دمانگاری مادون قرمز بررسی شده است. آزمایش ها در عدد رینولدز جریان اصلی 10000(بر اساس قطر معادل روزنه) روی صفحه آزمایش با زاویه تزریق جت نسبت به سطح 30 درجه انجام شده است. اندازه گیری ها در سرعت جریان اصلی 27 متر بر ثانیه و چهار نسبت دمش 4/0، 5/0، 7/0 و 8/0 صورت گرفته است. نتایج بدست آمده نشان می دهد که هندسه روزنه شکل یافته لوبیایی شکل در مقایسه با روزنه استوانه ای، منجر به افزایش اثربخشی خنک کاری لایه ای می شود. لازم به ذکر است که بیش ترین اثربخشی خنک کاری در نسبت دمش 5/0 و کم ترین اثربخشی در نسبت دمش 4/0 حاصل می شود. با استفاده از روزنه لوبیایی شکل، اثربخشی خنک کاری لایه ای متوسط گیری شده کل ناحیه در نسبت دمش های مختلف بین 4/45 الی 4/207 درصد افزایش می یابد.

کلیدواژه‌ها


[1]      Z. Wenwu and Hu. Hui, “A novel sand-dune-inspired design for improved film cooling performance,” Int. J. Heat Mass Transf., Vol. 110, No. 7, pp. 908–920, 2017.
[2]      J. S. Liu, M. F. Malak, L. A. Tapia  and D. C. Crites, “Enhanced film cooling effectiveness with new shaped holes,” ASME Coference, pp. 1517–1527, 2010.
[3]      J. B. Anderson, D. G. Bogard, R. D. Moser and G. Laskowski, “Implicit LES for Shaped-hole film cooling flow,” 2017.
[4]      J. H. Liu, Y. B. Liu and L. Liu, “Film cooling modeling of a turbine vane with multiple configurations of holes,” Case Stud. Therm. Eng., Vol. 11, pp. 71–80, 2018.
[5]      R. B. R. J. Goldstein and E. G. Eckert, “Effects of hole geometry and density on three- dimensional film cooling,” Int. J. Heat Mass Transf., vol. 17, no. 5, pp. 595–607, 1974.
[6]      Ramezanizadeh M., Taeibi-Rahni M. and Saidi MH., “Investigation of density ratio effects on normally injected cold jets into a hot cross flow,” Arch. Appl. Mech., Vol. 77, No. 11, pp. 835–847, 2007.
[7]      Taeibi-Rahni M., Ramezanizadeh M., Ganji DD., Darvan A., Ghasemi E., Soleimani S. and Bararni H., “Large-eddy simulations of three dimensional turbulent Jet in a cross flow using a dynamic subgrid-scale eddy viscosity model with a global model coefficient,” World Appl. Sci. J., vol. 9, no. 10, pp. 1191–1200, 2010.
[8]      M. Ramezanizadeh, M. Taeibi-Rahni. M.H. Saidi “Large eddy simulation of multiple jets into a cross flow,” Scientia Iranica, Vol. 14, No. 3, pp. 240–250, 2007.
 
[9]      D. G. Bogard and M. E. Crawford, “Hydrodynamic measurements of Jets in crossflow for gas turbine film cooling applications,” Vol. 111, No. April 1989, pp. 139–145, 1989.
[10]    C. M. Pietrzyk J. R., Bogard D. G., “Effects of density ratio on the hydrodynamics of film cooling,” Vol. 112, No. July 1990, pp. 437–443, 1990.
[11]    A. K. Sinha, D. G. Bogard and M. E. Crawford, “Film-cooling effectiveness downstream of a single row of holes with variable density ratio,” J. Turbomach., Vol. 113, No. 3, pp. 442–449, 1991.
[12]    J. H. Leylek and R. D. Zerkle, “Discrete-jet film cooling : a comparison of computational results with experiments,” Vol. 116, No. July 1994, 1994.
[13]    M. Gritsch, W. Colban, H. Schär, K. Döbbeling, H. Schär and K. Döbbeling, “Effect of hole geometry on the thermal performance of fan-shaped film cooling holes,” J. Turbomach., Vol. 127, No. 4, p. 718, 2005.
[14]    C. Saumweber and A. Schulz, “Effect of geometry variations on the cooling performance of fan-shaped cooling holes,” ASME Turbo Expo, Vol. 134, pp. 1–16, 2008.
[15]    S. Gritsch, M., Schulz, A., and Wittig, “Adiabatic wall effectiveness measurements of film-cooling holes with expanded exits,” ASME J. Turbomach., Vol. 3, No. 98, pp. 931–938, 2006.
[16]    X. Zhu, L. Liu and F. Yuan, “Effect of rotation on flow field and film cooling effectiveness in film-cooled turbine rotors,” Vol. 31, No. 4, pp. 361–370, 2014.
[17]    S. Khajehhasani and B. Jubran, “Film cooling from novel sister shaped single-holes,” ASME Turbo Expo 2014 Turbine Tech. Conf. Expo. GT2014, pp. 1–13, 2014.
[18]    M. R. Salimi M. Ramezanizadeh, and M. Taeibi-Rahni and R. Farhadi-Azar, “Film cooling effectiveness enhancement applying another jet in the upstream neighbor of the main jet-using les approach,” J. Appl. Fluid Mech., Vol. 9, No. 1, pp. 33–42, 2016.
[19]    R. S. Bunker, “A review of shaped hole turbine film-cooling technology,” J. Heat Transfer, Vol. 127, pp. 441–453, 2005.
[20]    K. Lee and K. Kim, “Shape optimization of a fan-shaped hole to enhance film-cooling Effectiveness,” Int. J. Heat Mass Transf., Vol. 53, No. 15, pp. 2996–3005, 2010.
[21]    Y. P. Lu, “Effect of hole configurations on film cooling from cylindrical inclined holes for the application to gas turbine blades,” Louisiana State University, 2007.
[22]    M. Ramezanizadeh and Y. Pouladrang, “Experimental investigation of film cooling effectiveness applying a novel integrated compound jets design for the jet holes,” Modares Mech. Eng., Vol. 18, No. 03, pp. 302–310, 2018.
[23]    Lee. K. D and K. Kim, “Performance evaluation of a novel film-cooling hole,” J. Heat Transfer, Vol. 134, No. 10, p. 101702, 2012.
[24]    Y. Pouladrang and M. Ramezanizadeh, “Experimental investigation of the effect of novel pea jet hole on the thermal behavior of jets injected into a crossflow,” J.Mechanics & Aerodynamics, Vol. 7, No.2, p.p 33-34, 2018.
[25]    L. M. Wright and E. L. Martin, “Double-Jet ejection of cooling air for improved film cooling,” ASME Conf. Proc., p. 44541, 2011.
[26]    R. Farhadi-Azar, M. Ramezanizadeh, M. Taeibi-Rahni and M. Salimi, “Compound triple jets film cooling improvements via velocity and density ratios: large eddy simulation,” J. Fluids Eng., Vol. 133, pp. 031202, 2011.
[27]    F. N. A. M. M, Abdala and D. H. Elwekeel, “Film cooling effectiveness and flow structures for novel upstream steps,” Appl. Therm. Eng, Vol. 105, No. 10, pp. 397–410, 2016.
[28]    W. Zhou and H. Hu, “Improvements of film cooling effectiveness by using barchan dune shaped ramps,” Int. J. Heat Mass Transf., Vol. 103, pp. 443–456, 2016.
[29]    M. Ramezanizadeh and Y. Pouladrang, “Experimental investigation of longitudinal tabs effects on film-cooling effectiveness of pea shaped holes in gas turbine blades,” Amirkabir J. Mech. Eng., Vol.52, No. 4, pp. 813-832, 2020.
[30]    R. J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., Vol. 1, No. 1, pp. 3–17, 1988.
[31]    A. Dhungel, Y. Lu, W. Phillips, E. Srinath V. and H. James, “Film cooling from a row of holes supplemented with antivortex holes,” J. Turbomach., Vol. 131, No. 2, pp. 021007, 2009.
[32]    S. A. Lawson and K. A. Thole, “Effects of simulated particle deposition on film cooling,” ASME, Vol. 133, No. 2, pp. 021009, 2011.
[33]    M. Kunze, S. Preibisch and K. Landis, “A new test rig for film cooling experiments on turbine endwalls,” Proc. ASME Turbo Expo conf, pp. 989–998, 2008.
[34]    B. Johnson, W. Tian, K. Zhang, and H. Hu, “An experimental study of density ratio effects on the film cooling injection from discrete holes by using PIV and PSP Techniques,” Int. J. Heat Mass Transf., Vol. 76, pp. 337–349, 2014.
[35]    B.-T. An, J.-J. Liu, C. Zhang and S.-J. Zhou, “Film cooling of cylindrical hole with a downstream short crescent-shaped block,” J. Heat Transfer, Vol. 135, No. 3, p. 031702, 2013.
[36]    A. P. Rallabandi, J. Grizzle and J. Han, “Effect of upstream step on flat plate film-cooling effectiveness using PSP,” J. ASME Turbomach., Vol. 133, No. 4, pp. 041024–1/8, 2011.