بهینه‌سازی عملکرد روتور اصلی بالگرد در مانورعرضی با استفاده از شبیه‌سازی معکوس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مجتمع دانشگاهی هوافضا- دانشجوی دکتری- دانشگاه صنعتی مالک اشتر موسسه آموزشی و تحقیقاتی صنایع دفاعی

2 مجتمع دانشگاهی هوافضا- عضو هیات علمی- دانشگاه صنعتی مالک اشتر- تهران- ایران

چکیده

در این مقاله نتایج طراحی روتور اصلی بهینه با هدف دستیابی به توان مورد نیاز کمینه، نسبت برآ به پسای و چالاکی بیشینه با استفاده از تکنیک بهینه‌سازی عددی برای بالگرد با یک روتور اصلی در مانور مارپیچ ارائه می‌شود. فرآیند بهینه‌سازی اساساً مبتنی بر روش پاسخ سطح، طراحی آزمایش به روش بهینه I، شبیه‌سازی معکوس بالگرد، توسعه مدل ریاضی عملکرد، تبدیل مساله بهینه‌سازی چند هدفه به مساله تک هدفه با استفاده از تابع مطلوبیت و نهایتاً یافتن حل عددی بهینه است. تاثیر پارامترهای طراحی شامل وزن بالگرد و مشخصات هندسی پره‌های روتور اصلی (وتر پره، نسبت باریک‌شوندگی پره، نقطه شروع باریک‌شوندگی روی پره و پیچش پره) بر کارآیی و خوش‌دستی بالگرد مورد بررسی قرار می‌گیرد. پاسخ‌های سیستم از طریق شبیه‌سازی معکوس شش درجه آزادی (غیرخطی) با مدل آیرودینامیک شبه دائم روتور اصلی استخراج می‌شود. بدیهی است با فرایند مطرح در این تحقیق، تحلیل و بررسی دقیق پارامترهای طراحی روتور اصلی و اثرات متقابل آن‌ها بر پاسخ‌های عملکردی بالگردها امکان‌پذیر شده و این موجب کاهش زمان و هزینه طراحی پره‌های مدرن برای روتور اصلی می‌شود. نتایج حاصل نشان می‌دهد که پره بهینه با مشخصات هندسی مشخص، توان مورد نیاز بالگرد در مانور مارپیچ را در حدود 7 درصد کاهش داده و نسبت برآ به پسا و تندی رول بالگرد را به ترتیب 10 و 36 درصد نسبت به بالگرد با پره مستطیلی با ایرفویل ناکا 0012 افزایش می‌دهد که این نشانگر بهبود قابل‌ملاحظه در طراحی پره‌های روتور اصلی محسوب می‌شود.

کلیدواژه‌ها


[1]        S. Hersey, A. Sridharan and R. Celi, "Multiobjective performance optimization of a coaxial compound rotorcraft configuration," Journal of Aircraft, vol. 54, no. 4, pp. 1498-1507, 2017.
[2]        S. Chae, K. Yee, C. Yang, T. Aoyama, S. Jeong and S. Obayashi, "Helicopter rotor shape optimization for the improvement of aeroacoustic performance in hover," Journal of Aircraft, vol. 47, no. 5, pp. 1770-1783, 2010.
[3]        Z. Zhu and Q.-j. Zhao, "Optimization for rotor blade-tip planform with low high-speed impulsive noise characteristics in forward flight," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 231, no. 7, pp. 1312-1324, 2017.
[4]        B. Glaz, T. Goel, L. Liu, P. P. Friedmann and R. T. Haftka, "Multiple-surrogate approach to helicopter rotor blade vibration reduction," AIAA journal, vol. 47, no. 1, pp. 271-282, 2009.
[5]        D. Fusato and R. Celi, "Multidisciplinary design optimization for aeromechanics and handling qualities," Journal of Aircraft, vol. 43, no. 1, pp. 241-252, 2006.
[6]        M. Elfarra, M. Kaya and F. Kadioglu, "A parametric CFD study for the effect of spanwise parabolic chord distribution on the thrust of an untwisted helicopter rotor blade," in 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1795.
[7]        P. Singh and P. P. Friedmann, "A Computational Fluid Dynamics–Based Viscous Vortex Particle Method for Coaxial Rotor Interaction Calculations in Hover," Journal of the American Helicopter Society, vol. 63, no. 4, pp. 1-13, 2018.
[8]        S. Darwish, M. Abdelrahman, A. M. Elmekawy and K. Elsayed, "Aerodynamic shape optimization of helicopter rotor blades in hover using genetic algorithm and adjoint method," in 2018 AIAA Aerospace Sciences Meeting, 2018, p. 0044.
[9]        A. Le Pape and P. Beaumier, "Numerical optimization of helicopter rotor aerodynamic performance in hover," Aerospace Science and Technology, vol. 9, no. 3, pp. 191-201, 2005.
[10]      F. Shahmiri, M. Sargolzehi and M. A. S. Ashtiani, "Systematic evaluation of the helicopter rotor blades: design variables and interactions," Aircraft Engineering Aerospace Technology, 2019.
[11]      P. C. Murphy and D. Landman, "Experiment design for complex VTOL aircraft with distributed propulsion and tilt wing," in AIAA Atmospheric Flight Mechanics Conference, 2015, p. 0017.
[12]      F. Shahmiri and M. E. Badihi, "Blade planform improvement and airfoil shape optimization of helicopters in hover flight," Journal of the Brazilian Society of Mechanical Sciences Engineering, vol. 42, no. 8, pp. 1-14, 2020.
[13]      R. Bradley and D. Thomson, "The development and potential of inverse simulation for the quantitative assessment of helicopter handling qualities," in Proceedings of AHS/NASA Conference. Piloting Vertical Flight Aircraft: Flying Qualities and Human Factors, 1993, pp. 251-263.
[14]      R. Celi, "Optimization-based inverse simulation of a helicopter slalom maneuver," Journal of Guidance, Control, and Dynamics, vol. 23, no. 2, pp. 289-297, 2000.
[15]      B. J. Baskett, "Aeronautical design standard performance specification handling qualities requirements for military rotorcraft," ARMY AVIATION AND MISSILE COMMAND REDSTONE ARSENAL2000.
[16]      M. Imiela and Technology, "High-fidelity optimization framework for helicopter rotors," Aerospace Science and Technology, vol. 23, no. 1, pp. 2-16, 2012.
[17]      T. Wilcock and A. C. Thorpe, Flight Simulation of a Wessex Helicopter-a Validation Exercise. Citeseer, 1973.
[18]      E. G. Barbosa, W. de Castro Leite Filho and L. C. S. Góes, "Inverse simulation using differentiation and integration-based approach applied to the pendulum with spring model," 2012.
[19]      D. Murray-Smith and E. McGookin, "A case study involving continuous system methods of inverse simulation for an unmanned aerial vehicle application," Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, no. 14, pp. 2700-2717, 2015.
[20]      D. J. Murray-Smith, "A review of inverse simulation methods and their application," International Journal of Modelling Simulation, vol. 34, no. 3, pp. 120-125, 2014.
[21]      D. J. Murray-Smith, "An Approximate Differentiation Method of Inverse Simulation based on a Continuous System Simulation Approach," Simul. Notes Eur., vol. 23, no. 3-4, pp. 111-116, 2013.
[22]      D. Thomson and R. Bradley, "Inverse simulation as a tool for flight dynamics research—Principles and applications," Progress in Aerospace Sciences, vol. 42, no. 3, pp. 174-210, 2006.
[23]      A. Abhishek and R. Prasad, "Helicopter Unsteady Maneuver Analysis Using Inverse Flight Dynamics Simulation and Comprehensive Analysis," Journal of Aircraft, vol. 53, no. 6, pp. 1614-1625, 2016.
[24]      G. Avanzini, G. De Matteis and A. Torasso, "Assessment of helicopter model accuracy through inverse simulation," Journal of Aircraft, vol. 54, no. 2, pp. 535-547, 2017.
[25]      C.-J. Kim and S. W. Hur, "Efficient and robust inverse simulation techniques using pseudo-spectral integrator with applications to rotorcraft aggressive maneuver analyses," International Journal of Aeronautical and Space Sciences, vol. 20, no. 3, pp. 768-780, 2019.
[26]      I. A. Piacenza, F. Giulietti, and G. Avanzini, "Inverse simulation of unconventional maneuvers for a quadcopter with tilting rotors," IFAC Proceedings Volumes, vol. 46, no. 30, pp. 232-239, 2013.
[27]      K. Worrall, D. Thomson and E. McGookin, "Application of Inverse Simulation to a wheeled mobile robot," in 2015 6th International Conference on Automation, Robotics and Applications (ICARA), 2015, pp. 155-160: IEEE.
[28]      L. Lu, D. J. Murray-Smith and D. Thomson, "Issues of numerical accuracy and stability in inverse simulation," Simulation Modelling Practice Theory, vol. 16, no. 9, pp. 1350-1364, 2008.
[29]      W. Blajer, J. Graffstein and M. Krawczyk, "Modeling of aircraft prescribed trajectory flight as an inverse simulation problem," in Modeling, simulation and control of nonlinear engineering dynamical systems: Springer, 2009, pp. 153-162.
[30]      W. Blajer and K. Kołodziejczyk, "Improved DAE formulation for inverse dynamics simulation of cranes," Multibody System Dynamics, vol. 25, no. 2, pp. 131-143, 2011.
[31]      D. Murray-Smith, "Development of an inverse simulation method for the analysis of train performance," Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail Rapid Transit, vol. 232, no. 5, pp. 1295-1308, 2018.
[32]      T. Uppal, S. Raha, S. Srivastava and Jet-Engines, "Inverse Simulation for Gas Turbine Engine Control through Differential Algebraic Inequality Formulation," International Journal of Turbo, vol. 35, no. 4, pp. 373-383, 2018.
[33]      R. Fletcher, Practical methods of optimization. John Wiley & Sons, 2013.
[34]      C. J. Price, I. D. Coope and D. Byatt, "A convergent variant of the Nelder–Mead algorithm," Journal of optimization theory and applications, vol. 113, no. 1, pp. 5-19, 2002.