Cooperative patrolling Scenario design providing the ability to focus on priority areas by a group of UAVs

Document Type : Original Article

Authors

1 Faculty of Electrical and Computer Engineering, Malek Ashtar University of Technology

2 Faculty of Aerospace, Malek Ashtar University of Technology

Abstract

Continuous aerial patrolling of long borders of a country requires a group of cooperative unmanned aerial vehicles (UAVs). Previous research based on the spatio-temporal virtual plane provided a framework for comparing different patterns and scenarios of patrolling from the point of view of criteria such as revisit time, percentage of spatio-temporal coverage and the degree of uniformity of coverage. Continuing previous research, the present paper uses the concept of spatio-temporal coverage to provide an automated process for patrolling scenario design with the ability to focus on priority areas such as intruder’s corridors. The designed scenario is described based on the number and distribution of the UAVs at each airport, the time difference between their take-offs, the movement pattern of each UAV and their speed along the path. More focus on priority areas is provided by adjusting the time difference between taking-off the UAVs from the airports or changing their speed on the interested areas. The proposed process considers practical constraints such as minimum speed and maximum flight duration of UAVs, path specifications, payload specifications, and etc. in the production of feasible paths. In the following, the user's priorities regarding reducing the number of UAVs, increasing the coverage percentage, and the reduction of the maximum and average revisit time is considered in selecting the final scenario among the produced feasible path. The proposed process is implemented as a toolbox and the results show the ability of this method to design an appropriate scenario based on user requirements and existing constraints.

Keywords


  • [1] Koslowski, M. B. Schulzke, 2018, "Drones along Borders: Border Security UAVs in the United States and the European Union." International Studies Perspectives 19.4, 305-324.‏
  • [2] G. Jumbert. 2018, "Control or rescue at sea? Aims and limits of border surveillance technologies in the Mediterranean Sea." Disasters 42.4, 674-696.‏
  • [3] Sun, P. Wanga, M. C. Vuran, M. A. Al-Rodhaan, A. M. Al-Dhelaan and I. F. Akyildiz, 2011 "BorderSense: Border patrol through advanced wireless sensor networks," Ad Hoc Networks 9(3), 468-477.
  • [4] Dudek, C. Haas, A. Kuntz, M. Zitterbart, D. Krger, P. Rothenpieler, D. Pfisterer and S. Fischer, 2009, "A Wireless Sensor Network For Border Surveillance," ACM Conference on Embedded Networked Sensor Systems (SenSys09), Berkeley, CA, USA.
  • [5] Boudriga, 2016, "A WSN-based system for country border surveillance and target tracking," Advances in remote sensing, 5(1), 51-72.
  • [6] Berrahal, J. H. Kim, S. Rekhis, N. Boudriga, D. Wilkins and J. Acevedo, 2016, "Border surveillance monitoring using Quadcopter UAV-Aided Wireless Sensor Networks", Journal of Communications Software and Systems, 12(1), 67-82.
  • [7] Flesher, O. Oni and A. Sassoon, 2011, "Border Security: Air Team", Institute for Systems Research, James Clark School of Engineering, Universirt of Maryland.
  • [8] T. Ho, E. I. Grøtli, P. B. Sujit, T. A. Johansen and J. B. Sousa, 2015, "Optimization of Wireless Sensor Network and UAV Data Acquisition", Journal of Intelligent & Robotic Systems 78(1), 159-179.
  • [9] Sharma and R. Kumar, 2015, "A Cooperative Network Framework for Multi-UAV Guided Ground Ad Hoc Networks", Journal of Intelligent & Robotic Systems 77(3-4), 629-652.
  • Kiekintveld, V. Kreinovich and O. Lerma, 2011, "Optimizing Trajectories for Unmanned Aerial Vehicles (UAVs) Patrolling the Border", University of Texas, San Francisco, CA, 23-26.
  • DeLima, Pedro, and Daniel Pack, 2009, "Maximizing search coverage using future path projection for cooperative multiple UAVs with limited communication ranges" Optimization and Cooperative Control Strategies. Springer, Berlin, Heidelberg, 103-117.‏
  • Perez-Carabaza, E. Besada-Portas, J. A. Lopez-Orozco, M. Jesus, 2018, "Ant colony optimization for multi-UAV minimum time search in uncertain domains." Applied Soft Computing 62, 789-806.
  • Maza, A. Ollero, 2007, "Multiple UAV cooperative searching operation using polygon area decomposition and efficient coverage algorithms." Distributed Autonomous Robotic Systems 6: 221-230, Springer, Tokyo.‏
  • حسن حقیقی، سید حسین ساداتی، جلال کریمی، سید محمد مهدی دهقان، 1396، "بهینه‌سازی هیوریستیکی زمان بازبینی نظارت مداوم چندعاملی با استفاده از توابع وزنی کمترین مسافت"، دانش و فناوری هوافضا 6 (2)، 129-41.
  • حسن حقیقی، سید حسین ساداتی، جلال کریمی، سید محمد مهدی دهقان، 1397، "نظارت مداوم چندفروندی به‌وسیله الگوهای پیمایشی پایه با هدف کمینه‌سازی زمان بازبینی"، مهندسی هوانوردی۲۰ (۱) :۱-۱۲.
  • Nigam, S. Bieniawski, I. Kroo, J. Vian, 2012, “Control of multiple UAVs for persistent surveillance: algorithm and flight test results. IEEE Transactions on Control Systems Technology”, 20(5):1236-51.
  • K. Ure, G. Chowdhary, T. Toksoz, J.P. How, M.A. Vavrina, J Vian, 2015, “An automated battery management system to enable persistent missions with multiple aerial vehicles”, IEEE/ASME Transactions on Mechatronics. 20(1): 275-86.
  • Hayat, et al, 2017, "Multi-objective UAV path planning for search and rescue." Robotics and Automation (ICRA), 2017 IEEE International Conference on, IEEE.‏
  • Nigam, 2014, “The Multiple Unmanned Air Vehicle Persistent Surveillance Problem: A Review”, Journal of Machines, 2(1):13-72.
  • Scherer, B. Rinner, 2019, "Persistent Multi-UAV Surveillance with Data Latency Constraints."arXiv preprint arXiv:1907.01205.‏
  • A. Khesali, S. M. Mehdi Dehghan and S. H. Cheheltani, 2014, “A new spatiotemporal virtual plane to evaluate the performance of the border coverage scenarios”, 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM). IEEE.
  • خصالی، دهقان و توکلی، تابستان 1396، "ارزیابی و انتخاب سناریوی مناسب پوشش هوایی مرز به کمک صفحه مجازی مکانی-زمانی"، مجله مهندسی برق دانشگاه تبریز، جلد 47، شماره 2.