اثر مقیاس کوچک بر ارتعاشات غیرخطی میکرو ورق دایره‌ای ویسکوالاستیک واقع بر بستر غیرخطی ویسکوالاستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه مکانیک، دانشکده فنی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

2 عضو هیأت علمی گروه مکانیک، دانشکده فنی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

3 عضو هیأت علمی، گروه مکانیک، دانشکده فنی، واحد تهران مرکزی، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

در این مقاله، ارتعاشات آزاد غیرخطی میکرو ورق دایره‌ای توپر و توخالی ویسکوالاستیک بررسی می‌شود. این میکرو ورق بر روی بستر متقارن و نامتقارن ویسکوالاستیک غیرخطی قرارگرفته است. اثر مقیاس کوچک با استفاده از تئوری تنش کوپل اصلاح‌شده لحاظ می‌شود. معادلات غیرخطی میکرو ورق با اصل همیلتون بر اساس نظریه تغییر شکل برشی مرتبه اول (FSDT) به‌دست‌آمده است. برای به دست آوردن فرکانس طبیعی غیرخطی از روش اجزای محدود (FEM) و الگوریتم تکرار نیوتن استفاده‌شده است. نتایج به‌دست‌آمده با نتایج محققان مقایسه شده است و تطابق خوبی بین آن‌ها مشاهده است. سپس اثرات پارامترهای مختلف مانند پارامتر مقیاس طول، نسبت شعاع بیرونی به ضخامت، حداکثر انحراف به ضخامت، بستر غیرخطی نرم و سخت شونده، بسترهای غیرخطی متقارن و نامتقارن، شرایط مرزی مختلف، میرایی سازه و بستر بررسی شد. نتایج نشان می‌دهد که شرایط مرزی آزاد و گیردار به ترتیب دارای بالاترین و کمترین فرکانس غیرخطی میکرو ورق دایره‌ای توپر و توخالی هستند. همچنین، بسترهای ویسکوالاستیک غیرخطی متقارن و نامتقارن بر فرکانس غیرخطی تأثیر معناداری دارند و فرکانس غیرخطی میکرو ورق دایره‌ای توخالی در حضور بستر نامتقارن سخت شونده به مقادیر بالاتر برای هر نسبت دامنه به ضخامت تغییر می‌کند.

کلیدواژه‌ها


  1. Solovyev, A. N., Duong, L.V., Optimization for the Harvesting Structure of the Piezoelectric Bimorph Energy Harvesters Circular Plate by Reduced Order Finite Element Analysis”, International Journal of Applied Mechanic, Vol. 8, 3, 1650029, 2016
  2. Dittmeyer, R., Boeltken, T., Piermartini, P., Selinsek, M., Loewert, M., Dallmann, F., Kreuder, H., Cholewa, M., Wunsch, A., Belimov, M., Farsi, S., Pfeifer, P., “Micro and micro membrane reactors for advanced applications in chemical energy
  3. conversion”, Current Opinion Chemistry Engineering, Vol.17, pp. 108-125, 2017
  4. Tang, X., Hu, Z., Yuan, W., Hu, W., Haibing, S., Han, D., Zheng, J., Hao, J., Zang, Z., Du, J., Leng, Y., Fang, L., Zhou, M., Perovskite CsPb2Br5 Microplate Laser with Enhanced Stability and Tunable Properties”, Advanceed Optic and Material, Vol. 5, 3, 1600788, 2019.
  5. Qi, Y., Xu, S., Huang, D., Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-plate in front of the blade leading edge”, Renewable Energy, Vol. 179, pp. 2309-2321, 2021
  6. Kim, H. , Ma, P. S., Kim, B. K., Lee, S.H., Seo, Y.H., Sound transmission loss of multi-layered elastic micro-perforated plates in an impedance tube”, Applied Acoustic, Vol. 166, 107348, 2020
  7. Maury, C., Bravo, T., Wideband sound absorption and transmission through micro-capillary plates: Modelling and experimental validation”, Journal of Sound and Vibration, Vol. 478, 115356, 2020
  8. Temur, K., Imeci, S. T., Tri resonance multi slot patch antenna”, Heritage Sustainable Deviation, Vol. 2 1, pp. 30-37, 2020
  9. Shittu, S., Li, G., Zhao, X., Zhou, J., Ma, X., Golizadeh Akhlaghi, Y., Experimental study and exergy analysis of photovoltaic-thermoelectric with flat plate micro-channel heat pipe”, Energy Conversion Management, Vol. 207, 112515, 2020
  10. Feng, X., Xin, G., Experimental Study on Ultrasonic Vibration-Assisted WECDM of Glass Microstructures with a High Aspect Ratio”, Micromachines, Vol. 12, 2, 125, 2021
  11. Qi, Y., Xu, S., Huang, D., “Investigation on aerodynamic performance of horizontal axis wind turbine by setting micro-plate in front of the blade leading edge”, Renewable Energy, Vol. 179, pp. 2309-2321, 2021
  12. Yao, T., Ouyang, H., Dai, S., Deng, Z., Zhang, K., “Effects of manufacturing micro-structure on vibration of FFF 3D printing plates: Material characterisation
  13. numerical analysis and experimental study”, Composite Structure, Vol. 268, 113970, 2021
  14. Wang, H., Zhang, M., Gao, J., Lan, Y., Zuo, Y., Zheng, X., Applications of the elastic modes of a circular plate in wavefront correction of the adaptive optics and the active optics”, Optics Express, Vol. 29, 2, pp. 1109-1124, 2021
  15. Kang, J.H., Three-dimensional vibration analysis of thick, circular and annular plates with nonlinear thickness variation”, Composite Structure, Vol. 81, pp. 1663-1675, 2003
  16. Haterbouch, M., Benamar, R., The effects of large vibration amplitudes on the axisymmetric mode shapes and natural frequencies of clamped thin isotropic circular plates, part I: iterative and explicit analytical solution for non-linear transverse vibrations”, Journal of Sound and Vibration, Vol. 265, pp. 123–154, 2003
  17. Gupta, U.S., Lal, R., Sharma, S., Vibration analysis of non-homogeneous circular plate of nonlinear thickness variation by differential quadrature method”, Journal of Sound and Vibration, Vol. 298, pp. 892–906, 2006
  18. Nie, G.J., Zhong, Z., Semi-analytical solution for three-dimensional vibration of functionally graded circular plates”, Computational Methods of Applied Mechanical Engineering, 196, pp. 4901–4910, 2007
  19. Peng, J.S., Yuan, Y.Q., Yang, J., Kitipornchai, S., A semi-analytic approach for the nonlinear dynamic response of circular plates”, Applied Mathematical Modelling, Vol. 33, pp. 4303-4313, 2009
  20. Saleem, M., Microplane modeling of the elasto-viscoplastic constitution”, Journal of Research Science Engineering Technology, Vol. 8, 3, pp. 9-25, 2020
  21. Eltaher, M.A., Mohamed, N., Mohamed, S.A., Seddek, L.F., Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations”, Applied Mathematical Modelling, Vol. 75, pp. 414-445, 2019
  22. Reddy, J. N., Romanoff, J., Loya, J.A., Nonlinear Finite Element Analysis of Functionally Graded Circular Plates with Modified Couple Stress Theory”, European Journal of Mechanic A Solids., Vol. 56, pp. 92-104, 2016
  23. Askari, A. R., Bi-stability of pressurized electrically actuated flat micro-plates”, International Journal of Solids Structures, Vol. 178–179, 167-179, 2019
  24. Beg, M. S., Yasin Y.M., Bending, free and forced vibration of functionally graded deep curved beams in thermal environment using an efficient layerwise theory”, Mechanic of Material, Vol. 159, 103919, 2021
  25. Wang, K. F., Wang, B., Zhang, C., Surface energy and thermal stress effect on nonlinear vibration of electrostatically actuated circular micro-/nanoplates based on modified couple stress theory”, Acta Mechanic, Vol. 228, 129-140, 2017
  26. Mahinzare, M., Ranjbarpur, H., Ghadiri, M., Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate”, Mechanic of Systems and Signal Processing, Vol. 100, pp. 188–207, 2018
  27. Javani, M., Kiani, Y., Eslami, M. R., Large amplitude thermally Induced vibrations of temperature dependent annular FGM plates”, Composites Part B, Vol. 163, pp. 371-383, 2019
  28. Ouakad, H. M., Valipour, A., Żur, K. K., Sedighid, H. M., Reddy, J. N., On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity”, Mechanic of Material, Vol. 148, 103532, 2020
  29. Mohamadi, A., Shahgholi, M., Ashenai Ghasemi, F., Nonlinear vibration of axially moving simply-supported circular cylindrical Shell”, Thin Walled Structures, Vol. 156, 107026, 2020
  30. Roshanbakhsh, M. Z., Tavakkoli, S. M., Navayi Neya, B., Free vibration of functionally graded thick circular plates: An exact and three-dimensional solution”, International Journal of Mechanic Sci., Vol. 188, 105967, 2020
  31. Sofiyev, A.H., Zerin, Z., Kuruoglu, N., Dynamic behavior of FGM viscoelastic plates resting on elastic foundations”, Acta Mechanica., Vol. 231, pp. 1-17, 2020
  32. Lal, R., Saini, R., Vibration analysis of FGM circular plates under non-linear temperature variation using generalized differential quadrature rule”, Applied Acoustic, Vol. 158, 107027, 2020
  33. Yuan, Y., Li, H., Parker. R.G., Guo, Y., Wang, D., Li, W., A unified semi-analytical method for free in-plane and out-of plane vibrations of arbitrarily shaped plates with clamped edges”, Journal of Sound and Vibration, Vol. 485, 115-573, 2020
  34. Vinyas, M., On frequency response of porous functionally graded magneto-electroelastic circular and annular plates with different electro-magnetic conditions using HSDT”, Composite Structure, Vol. 240, 112044, 2020
  35. Reddy, J.N., Nampally, P., Phan, N., Dual mesh control domain analysis of functionally graded circular plates accounting for moderate rotations”, Composite Structure, Vol. 257, 113153, 2021
  36. Genao, F.Y., Kim, J., Żur, K.K., Nonlinear finite element analysis of temperature-dependent functionally graded porous micro-plates under thermal and mechanical loads”, Composite Structure, Vol. 256, 112931, 2020
  37. Amabili, M., Nonlinear damping in nonlinear vibrations of rectangular plates: Derivation from viscoelasticity and experimental validation”, Journal of Mechanic and Physics of Solids, 118, pp. 275–292, 2018
  38. Tao, C., Dai, T., Isogeometric analysis for size-dependent nonlinear free vibration of graphene platelet reinforced laminated annular sector microplates”, European Journal of Mechanic A Solids, Vol. 86, 104-171, 2021
  39. Rai, A. K., Gupta, S. S., 2021. Nonlinear vibrations of a polar-orthotropic thin circular plate subjected to circularly moving point load”, Composite Structure,, Vol. 256, 112953, 2021
  40. Chanda, A., Sahoo, R., Forced Vibration Responses of Smart Composite Plates using Trigonometric Zigzag Theory”, International Journal of Structural Stability and Dynamics, 21, 5, 2150067, 2021
  41. Li, A., Ji, X., Zhou, S., Wang, L., Chen, J., Liu, P., Nonlinear axisymmetric bending analysis of strain gradient thin circular plate”, Applied Mathematical Modelling, Vol. 89, pp. 363-380, 2021
  42. Shafei, E., Faroughi, S., Rabczuk, T., Nonlinear transient vibration of viscoelastic plates: A NURBS-based isogeometric HSDT approach”, Computational Mathematical Applied, Vol. 84, pp. 1-15, 2021
  43. Haciyev, V. C., Sofiyev, A. H., Kuruoglu, N., On the free vibration of orthotropic and inhomogeneous with spatial coordinates plates resting on the inhomogeneous viscoelastic foundation”, Mechanic of Advance Material Structures, Vol. 26, 10, pp. 886-897, 2019
  44. Reddy, J. N., Romanoff, J., Loya, J. A., Nonlinear finite element analysis of functionally graded circular plates with modified couple stress theory”, European Journal of Mechanic A Solids, Vol. 56, pp. 92-104, 2015
  45. Liew, K. M., Han, J. B., Xiao, Z. M., Vibration analysis of circular Mindlin plates using the differential quadrature method”, Journal of Sound and Vibration, Vol.205, 5, pp. 617–630, 1997
  46. Shojaeefard, M. H., Saeidi Googarchin, H., Mahinzare, M., Eftekhari, S.A., Magnetic field effect on free vibration of smart rotary functionally graded nano/microplates: A comparative study on modified couple stress theory and nonlocal elasticity theory”, JOURNAL OF Intelligenous Material Systems and Structures, Vol. 29, 11, pp. 2492-2507, 2018