بررسی عددی و تجربی متغیرهای تأثیرگذار در تنش زدایی حرارتی ورق آلومینیومی جوشکاری شده

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری هوافضا، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران،ایران

2 دانشکده هوافضا دانشگاه علوم وفنون هوایی شهید ستاری تهران ایران

چکیده

جوشکاری قطعات آلومینیومی در اتصالات سازه‏های هوافضایی کاربرد فراوانی دارد و از اهمیت بسیاری برخوردار است. از مشکلاتی که اغلب صنایع کشور با آن مواجه‏اند تنش پسماند ناشی از فرآیند جوشکاری است. تنش پسماند در نواحی اطراف جوش می‏تواند باعث کاهش عمر کاری قطعات شود به همین علت شناخت، بررسی و کاهش آن در سازه‏های جوشکاری شده ضروری می‏باشد. روش‏های مختلفی برای اندازه‏گیری و کاهش تنش‏های پسماند وجود دارد. در این مقاله به معرفی انواع روش‏های تعیین و کاهش تنش پسماند پرداخته شده است. سپس به کمک فرآیند جوش آرگون دو ورق آلومینیومی از جنس آلیاژ 6061-T6 به یکدیگر متصل شده‏ و تنش‏های پسماند حاصله به روش سوراخ کاری‏ به دست آمده است. همچنین فرآیند جوشکاری دو ورق آلومینیومی مذکور به صورت سه‏بعدی در نرم‏افزار اجزاء محدود آباکوس شبیه‏سازی شده و تنش‏های پسماند استخراج شده‏ است. تمامی شرایط در تحلیل اجزای محدود مشابه شرایط جوشکاری در آزمایشگاه در نظر گرفته شده است، نتایج حاکی از دقت بالا در مدلسازی اجزای محدود فرآیند جوشکاری دارد. در نهایت به روش اجزای محدود، تنش‏گیری حرارتی مدل‏سازی شده و پارامترهای بهینه برای انجام عملیات فوق استخراج شده است.

کلیدواژه‌ها


[1] D. Berglund, H. Alberg and H. Runnemalm, Simulation of welding and stress relief heat treatment of an aero engine component, Finite Elements in Analysis and Design, Vol. 39, No. 9, pp. 865-881, 2003.
[2] X. C. Zhao, Y. D. Zhang, H. W. Zhang and Q. Wu, Simulation of vibration stress relief after welding based on FEM, Acta Metallurgica Sinica (English Letters), Vol. 21, No. 4, pp. 289-294, 2008.
[3] M. R. M. Aliha and H. Gharehbaghi, Fracture parameter determination for a thin-walled pressurized cylinder under the influence of residual stress induced by welding process, Aerospace Knowledge and Technology Journal, Vol. 3, No. 2, pp. 77-87, 2015. (In Persian)
[4] M. R. M. Alih and H. Gharehbaghi, The effect of combined mechanical load/welding residual stress on mixed mode fracture parameters of a thin aluminum cracked cylinder, Engeneering Fracture Mechanics, Vol. 180, pp. 213-238, 2017.
[5] R. G. Budynas and Keith J. Nishbeth, Shigley’s Mechanical Engineering Design, 10th Edition: McGraw-Hill, 2015.
[6] Z. Guo, R. Bai, Z. Lei, H. Jiang, J. Zou and C. Yan, Experimental and numerical investigation on ultimate strength of laser-welded stiffened plates considering welding deformation and residual stresses, Ocean Engineering, Vol. 234, pp. 109239, 2021.
[7] E. Barati, M. Kalateh and M. Rashtbarian, Strength analysis of aluminum matting plates welded by TIG welding process for airfield repair, Journal of Aeronautical Engineering, Vol. 20, No. 2, pp. 16-26, 2018. (In Persian)
[8] H. Gharehbaghi and M. R. Mohammad Aliha, Experimental measurements and finite element residual stress caused by welding aluminum sheets and investigating its effect on natural frequency values, Modares Mechanical Engineering, Vol. 18, No. 04, pp. 164-170, 2018. (In Persian)
[9] W. F. Hahn, Vibratory Residual Stress Relief and Modification Sin Metals to Conserve Resources and Prevent Pollution, Center of Environmental and Energy Research (CEER), 2002.
[10] M. A. Golozar, Heat treatment of steels, Isfahan: Isfahan University of Technology, 2016. (In Persian)
[11] K. Masubuchi and D. W. Hopkins, Analysis of Welded Structures: Residual Stresses, Distortion, and Their Consequences, Pergamon Press, 1980.
[12] H. R. Zarie, R. Sarkhosh, A. Farrokhabadi and H. Morshedi, Determination of static strength and fracture of aged aircraft structure using non-destructive quasi-static indentation test, Journal of aeronautical engineering, Vol. 23(1), pp. 33-43, 2021. (In Persian)
[13] J. Yang, H. L. I., D. Yan and H. Fang, Numerical simulation on bucking distortion of aluminum alloy thin-plate weldment, Materials Science in China, Vol. 3, No. 1, pp. 84-88, 2009.
[14] M. Eftekhary and M. Ahmadi Najafabadi, Evaluation of the capability of ultrasonic method for measuring longitudinal welding residual stress, by validating with X-Ray diffraction method, Modares Mechanical Engineering, Vol. 15, No. 9, pp. 1-10, 2015. (In Persian)
[15] ASTM E837-13a, Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method, ASTM International, West Conshohocken, PA, 2013.
[16] R. A. Kelsey, Measuring Non-Uniform residual stresses by the hole drilling method, Proceedings Society for Experimental Stress Analysis, Vol. 14, pp. 181-194, 1956.
[17] G. S. Schajer, Application of finite element calculations to residual stress measurements, Journal of Engineering Materials and Technology, Vol. 103, No. 2, pp. 157-163, 1981.
[18] G. S. Schajer, Measurement of Non-Uniform residual stresses using the Hole-Drilling method, Journal of Engineering Materials and Technology, Vol. 110, No. 4, pp. 338-343, 1988.
[19] M. Sedighi, M. Khandaei and J. Joudaki, Calibration coefficients for residual stress measurement in incremental hole drilling method, Modares Mechanical Engineering, Vol. 11, No. 1, pp. 19-27, 2011. (In Persian)
[20] M. Honarpisheh and V. Zandian, Investigation of residual stresses in stress-relieved samples by heat treatment and ultrasonic methods using hole-drilling method, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 273-278, 2015. (In Persian)
[21] M. T. Flaman, B. E. Mills and J. M. Boag, Analysis of stress variation with depth measurement procedures for the center hole method of residual stress measurement, Experimental Techniques, Vol. 11, No. 6, pp. 35-37, 1987.
[22] M. Zakeri, Evaluation of annealing process of polycarbonate sheet for residual stress removing, Modares Mechanical Engineering, Vol. 13, No. 6, pp. 103-113, 2013. (In Persian)
[23] B. A. B. Andersson, Thermal stresses in a submerged arc welded joint condering phase transformations, Transactions of the ASME, Vol. 100, No. 4, pp. 356-362, 1978.
[24] D. Deng, H. Murakawa, Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements, Computational Materials Science, Vol. 37, No. 3, pp. 269-277, 2006.
[25] M. Z. H. Khandkar, J. A. Khan and A. P. Reynolds, Predictions of temperature distribution and thermal history during friction stir welding: input torque-based model, Science and Technology of Welding and Joining, Vol. 8, No. 3, pp. 165–174, 2003.
[26] C. M. Chen and R. Kovacevic, Finite element modeling of friction stir welding-thermal and thermomechanical analysis, International Journal of Machine Tools & Manufacture, Vol. 43, pp. 1319-1326, 2003.
[27] S. H. Zargar, M. Farahani and M. K. Besharati Givi, Investigation on the effects of welding parameters on the submerged arc welding efficiency, Modares Mechanical Engineering, Vol. 13, No. 12, pp. 79-87, 2014. (In Persian)
[28] S. Nakhodchi, S. Akbari Iraj, A. shokuhfar and H. Rezazadeh, Numerical and experimental study of temperature and residual stress in multi-pass welding of two stainless steel plates having diffrent, Modares Mechanical Engineering, Vol. 14, No. 9, pp. 81-89, 2014. (In Persian)
[29] V. Karimnia and I. Sattari-Far, Investigating the influence of effective parameters on the residual stresses in circumferentially arc welded thin-walled cylinders of aluminum alloy series 5000, Modares Mechanical Engineering, Vol. 15, No. 3, pp. 377-386, 2015. (In Persian)
[30] S. Shakhesi, Y. Nazari, A. Hatami and M. Noghabi, Temperature and residual stresses distribution due to TIG welding of Ti-6Al-4V titanium alloy spherical shell by finite element analysis, Modares Mechanical Engineering, Vol. 16, No. 11, pp. 143-153, 2016. (In Persian)
[31] M. Honarpisheh and V. Zandian, Investigation of Residual Stresses in Stress-Relieved Samples by Heat Treatment and Ultrasonic Methods Using Hole-Drilling Method, Modares Mechanical Engineering, Vol. 14, No. 15, pp. 273-278, 2015. (In Persian)
[32] T. Hebel, 3 Major problems with thermal stress relief and how to overcome them, Bonal Tecnologies, Inc., 2008.
[33] R. Dawson and D. G. Moffat, Vibratory stress relief: A fundamental study of its effectiveness, Engenirring Material Technology, Vol. 102, No. 2, pp. 169-176, 1980.
[34] A. Hammad, C. Churiaque, J. Marí, S. Amaya and Y. Abdel-Nasser, Experimental and numerical investigation of hybrid laser arc welding process and the influence of welding sequence on the manufacture of stiffened flat panels, Journal of Manufacturing Processes, Vol. 61, pp. 527-538, 2021.
[35] X. K. Zhu  and Y. J. Chao, Effects of temperature dependent material properties on welding simulation, Computers and Structures, Vol. 80, No. 11, pp. 967-976, 2002.
[36] Y. Chao, X. Qi, Thermal and Thermo-Mechanical modeling of friction stir welding of aluminum alloy 6061-T6, Journal of Materials Processing & Manufacturing Science, Vol. 7, No. 2, pp. 215-233, 1998.
[37] M. Charkhi, D. Akbari, Application of pre-heating in the reduction of residual stress in the repair welds of steel pipes, Modares Mechanical Engineering, Vol. 17, No. 12, pp. 1-10, 2018. (In Persian)
[38] L. E. Lindgren, Finite Elemnt Modeling and Simulation of Welding Part 3: Efficiency and Integration, Journal of Thermal Stresses, Vol. 24, No. 4, pp. 195-231, 2001.