تحلیل عددی ضربه سرعت بالا بر روی مواد هدفمند گرادیانی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده مهندسی مکانیک، دانشگاه یزد، یزد، ایران

چکیده

توجه روزافزون صنایع با تکنولوژی بالا (صنایع هوایی و دفاعی) به مواد هدفمند گرادیانی نشان از کارایی بالای این دسته از مواد در صنایع مختلف دارد.در پژوهش حاضر، ضربه سرعت بالا بر روی ماده هدفمند گرادیانی متشکل از از دو آلیاژ فلزی AA5083-H116 و Ti-6Al-4V با احتساب مدل پلاستیک و مدل خرابی جانسون-کوک صورت پذیرفته است. این مطالعه بصورت عددی و با استفاده از کدنویسی پایتون در نرم‌افزار اجزای محدود آباکوس صورت پذیرفته است. از موارد بررسی شده در پژوهش حاضر میتوان به بررسی اثر شکل دماغه (نوک) ضربه‌زننده با در نظر گرفتن سه حالت مختلف، اثر تابع توزیع خواصی در ناحیه گرادیانی (توزیع توانی و سیگمویید) و اثر ترتیب قرارگیری لایه‌های فلزی برای نمونه تحت ضربه اشاره داشت. از اهم نتایج حاصل شده میتوان به کارایی بالاتر نمونه هدفمند گرادیانی در مقایسه با نمونه‌های خالص فلزی اشاره کرد. ضمن آنکه، در حالتی که ضریب n=1 در توزیع توانی و سیگمویید لحاظ شود، جذب انرژی نمونه بالاتر است. همچنین مشاهده شده است که لحاظ کردن تابع توزیع سیگمویید سبب رفتار مطلوبتر نمونه گرادیانی تحت ضربه سرعت بالا در مقایسه با تابع توزیع توانی بوده است. از بین سه ضربه‌زننده بررسی شده، نتایج عددی حاکی از آن است که میزان مقاومت و جذب انرژی قطعه تحت ضربه در برابر دماغه سرتخت (FLT)بیشترین و در مقابل دماغه مخروطی (SCN)کمترین بوده است. علت این نوع رفتار را میتوان مرتبط با تشکیل پلاگ (Plug) در برخورد دماغه FLT دانست؛ در حالیکه در برخورد ضربه‌زننده با دماغه SCN، فقط تشکیل پتال (Petal) مشاهده شده است.

کلیدواژه‌ها


[1] G. E. Knoppers, J. W. Gunnink, J. V .D. Hout and W. P. V. Vliet, “The reality of functionally graded material products, Intelligent Production Machines and Systems: First I”, PROMS Virtual Conference, Amsterdam, 467-474, 2005.
[2] M. B. Bever and P. E. Duwez, “Gradients in composite materials”, Mater Sci Eng, vol. 10, pp. 1-8, 1972.
[3] M. Shen and M. B. Bever, “Gradients in polymeric materials”, J Mater Sci, vol. 7, no. 7,  pp. 741-746, 1972.
[4]B. Kieback, A. Neubrand and H. Riedel, “Processing techniques for functionally graded materials”, Mater Sci Eng , vol. 362, pp. 81-105, 2003.
[5] R. M. Mahamood and E. T. Akinlabi, “Types of functionally graded materials and their areas of application, Functionally Graded Materials, Springer, pp. 9-21, 2017.
[6] K. R. Kashyzadeh and A. A. Asfarjani, “Finite element study on the vibration of functionally graded beam with different temperature conditions, Adv Mater 5(6) (2016) 57-65.
[7]M. Aydin and M. K. Apalak, “Experimental damage analysis of Al/SiC functionally graded sandwich plates under ballistic impact”, Mater Sci Eng-A vol. 671, pp. 107-117, 2016.
[8] G. Bao, L. Wang, “Multiple cracking in functionally graded ceramic/metal coatings”, Int J Solids Struct, vol. 32, no. 19, pp. 2853-2871, 1995.
[9] E. Martínez-Pañeda and R. Gallego, Numerical analysis of quasi-static fracture in functionally graded materials, Int J Mech Mater Des, vol. 11, no. 4, pp. 405-424, 2015.
[10] H. Salavati, H. Mohammadi, A. Yusefi and F. Berto, “Fracture assessment of V-notched specimens with end holes made of tungsten-copper functionally graded material under mode I loading”, Theor Appl Fract Mech, vol. 97, pp. 357-367, 2017.
[11] P. Zhu and K. M. Liew, “Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method," Compos Struct, vol. 93, no. 11, pp. 2925-2944, 2011.
[12] A. A. Khan, M. N. Alam, N. U. Rahman and M. Wajid, "Finite element modelling for static and free vibration response of functionally graded beam," Lat Am J Solids Stru , vol. 13, no. 4, pp. 690-714, 2016.
[13] A. H. Sofiyev, "The buckling and vibration analysis of coating-FGM-substrate conical shells under hydrostatic pressure with mixed boundary conditions," Compos Struct 209, pp. 686-693., 2019.
[14] B. Qin, R. Zhong, T. Wang, Q. Wang, Y. Xu and Z. Hu, "A unified Fourier series solution for vibration analysis of FG-CNTRC cylindrical, conical shells and annular plates with arbitrary boundary conditions," Compos Struct 232, pp. 111549, 2020.
[15]P. Jiao, Z. Chen, Y. Li, H. Ma and J. Wu, "Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical shell under axial power-law time-varying displacement load," Compos Struct 220, pp. 784-797, 2019.
[16]J. S. Kumar, B. S. Reddy and C. E. Reddy, "Nonlinear bending analysis of functionally graded plates using higher order theory, " Int J Eng Sci Tech, vol. 3, no. 4, pp. 3010-3022, 2011.
[17]R. Gunes, M. Aydin, M. K. Apalak and J. N. Reddy, "Experimental and numerical investigations of low velocity impact on functionally graded circular plates," Compos Part B-Eng, vol. 59, pp. 21-32, 2014.
[18] J. E. Jam and Y. Kiani, "Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment," Compos Struct 132, pp. 35-43., 2015.
[19] P. Malekzadeh and M. Dehbozorgi, "Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates," Compos Struct 140 , pp. 728-748, 2016.
[20]S. M. R. Khalili, K. Malekzadeh and A. V. Gorgabad, "Low velocity transverse impact response of functionally graded plates with temperature dependent properties," Compos Struct, vol. 96, pp. 64-74., 2013.
[21]Y. Kiani, M. Sadighi, S. J. Salami and M. R. Eslami, “Low velocity impact response of thick FGM beams with general boundary conditions in thermal field”, Compos Struct, vol. 104, pp. 293-303, 2013.
[22]H. Singh, B. C. Hazarika and S. Dey, “Low velocity impact responses of functionally graded plates”, Procedia Eng, vol. 173, pp. 264-270, 2017.
[23] R. Gunes, I. Ozkes, F. Nair and M .K. Apalak, “Experimental investigation of the low-velocity impact response of sandwich plates with functionally graded core”, J Compos Mater, vol. 54, no. 24, pp. 3571-3593, 2020.  
[24]M. Übeyli, E. Balci, B. Sarikan, M. K. Öztas, N. Camuscu, R. O. Yildirim and Ö. Keles, “The ballistic performance of SiC–AA7075 functionally graded composite produced by powder metallurgy”, Mater Des, vol. 56, pp. 31-36, 2014.
[25]C.-Y. Huang, Y.-L. Chen, “Effect of mechanical properties on the ballistic resistance capability of Al2O3-ZrO2 functionally graded materials”, Ceram Int 42, pp. 12946-12955, 2016.
[26]C.-Y. Huang, and Y.-L. Chen, “Design and impact resistant analysis of functionally graded Al2O3–ZrO2 ceramic composite”, Mater Des, vol. 91, pp. 294-305, 2016.
[27]S.-H. Chi and Y.-L. Chung, “Mechanical behavior of functionally graded material plates under transverse load—Part I: Analysis”, Int J Solids Struct , vol. 43, pp. 3657-3674, 2006.
[28]T. Børvik, A. H. Clausen, O. S. Hopperstad and M. Langseth, “Perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles-experimental study”, Int J Impact Eng, vol. 30, pp. 367-38, 2004.
[29] H. K., Sorensen, “ABAQUS 6.14 user’s manuals, dassault systèmes simulia corp.”, Providence, Rhode Island, USA, 2014.
[30] R. L. Donald, “Experimental investigations of material models for Ti-6Al-4V titanium and 2024-T3 aluminum”, Report No. DOT/FAA/AR-00/25", National Technical Information Service, Springfield, Virginia, 2000.
[31]Y. Zhang, J. C. Outeiro and T. Mabrouki, “On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting”, Procedia CIRP 31 112-117, 2015.
[32] A. H. Clausen, T. Børvik, O. S. and Hopperstad, A. “Benallal, flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality”, Mater Sci Eng, vol. 364, pp. 260-272, 2004.
[33] T. Børvik, M. J. Forrestal, O. S. Hopperstad, T. L. and Warren, M. “Langseth, perforation of AA5083-H116 aluminium plates with conical-nose steel projectiles – calculations”, Int J Impact Eng, vol. 36, pp. 426-437, 2009.
[34] H. Li, J. Lambros, B. A. Cheeseman and M. H. Santare, “Experimental investigation of the quasi-static fracture of functionally graded materials”, Int J Solids Struct, vol. 37, no. 27, pp. 3715-3732, 2000.
[35]E. Etemadi, A. A. Khatibi and M. Takaffoli, “3D finite element simulation of sandwich panels with a functionally graded core subjected to low velocity impact”, Compos Struct, vol. 89, pp. 28-34, 2009.
[36]A. Taherkhani, M. Sadighi, A. S. and Vanini, M. Z. Mahmoudabadi, “An experimental study of high-velocity impact on elastic–plastic crushable polyurethane foams”, Aerospace Science and Technology, vol. 50, pp. 245-255, 2016.