تعیین استحکام استاتیکی و شکست سازه هواپیماهای فرسوده با استفاده از آزمایش غیرمخرب نفوذ شبه استاتیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، مرکز تحصیلات تکمیلی، دانشگاه علوم وفنون هوایی شهید ستاری،تهران، ایران

2 دانشکده هوافضا دانشگاه علوم وفنون هوایی شهید ستاری تهران ایران

3 دانشیار، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس، تهران، ایران

4 کارشناس ارشد مکانیک، دانشکده مهندسی مکانیک، دانشگاه بوعلی سینا، همدان، ایران

چکیده

با توجه به غیرممکن بودن انجام آزمایش‌های مخرب، بر روی ناوگان هواپیمایی نیاز به روش‌های جدید و غیرمخرب به‌شدت احساس می‌شود. در پژوهش حاضر با استفاده از روش غیرمخرب نفوذ اتوماتیک گوی (ناگ) برخی از خواص مکانیکی فولاد 4340 آنیل شده و آلومینیوم 7075 خام و تهیه شده از هواپیمای فرسوده تعیین شده است. به منظور انجام محاسبات مربوط به روش ناگ کدنویسی روابط صریح در نرم افزار فرترن انجام و اعتبار سنجی شده است. در ادامه نمونه‌های آزمون کشش تک محوری از فولاد 4340 آنیل شده و آلومینیوم 7075 خام و تهیه شده از هواپیمای فرسوده آماده شده و منحنی تنش کرنش آن استخراج شده است. همچنین آزمون نفوذ اتوماتیگ گوی بر روی نمونه‌های فولادی 4340 آنیل‌شده و آلومینیوم 7075 خام و تهیه شده از هواپیمای فرسوده انجام گردید و نتایج حاصل از دو روش با هم مقایسه شد. نتایج مقایسه بین آزمایش کشش و ناگ نشان داد که خطای محاسبه تنش تسلیم و استحکام نهایی، به ترتیب کم‌تر از 9 و 14٪ بود. با افزایش نیرو، این مقدار در برخی نقاط به کم‌تر از 0/7 ٪ رسید.

کلیدواژه‌ها


[1]  E. Meyer and V. Z., Dtsch. Ing.,  vol. 52, ed: Ing, pp. 740–835, 1908.
[2]  D. Tabor, The hardness of metals: Oxford university press, 2000.
[3]  K. Sharma, V. Bhasin, and A. Ghosh, Property Estimation with Automated Ball Indentation Using Artificial Neural Network and Finite Element Simulation, JJMIE, vol. 4, 2010.
[4]  F. M. Haggag, R. K. Nanstad, J. T. Hutton, D. L. Thomas, and R. L. Swain, The use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials, in ASTM Symposium on the Application of Automation Technology to Fatigue and Fracture Testing, Kansas City, Missouri, 1989.
[5]  F. Haggag and R. Nanstad, Estimating fracture toughness using tension or ball indentation tests and a modified critical strain model,  vol. 170, ed: PVP, pp. 41-46, 1989.
[6]  H. K. Khandelwal, K. Sharma, and R. Chhibber, Mechanical Property Estimation of Similar Weld using Ball Indentation Technique, Journal of Minerals and Materials Characterization and Engineering, vol. 11, p. 1095, 2012.
[7]  O. Trudonoshyn, M. Puchnin, and O. Prach, Use Of The ABI Technique To Measure The Mechanical Properties Of Aluminium Alloys: Effect Of Heat-Treatment Conditions On The Mechanical Properties Of Alloys, Materiali in tehnologije, vol. 50, pp. 427-431, 2016.
[8]  M. Puchnin, O. Trudonoshyn, and O. Prach, Use Of The ABI Technique To Measure The Mechanical Properties Of Aluminium Alloys: Effect Of Chemical Composition On The Mechanical Properties Of The Alloys, Materiali in tehnologije, vol. 50, pp. 247-252, 2016.
[9]  A. Shedbale, I. Singh, B. Mishra, and K. Sharma, Evaluation of mechanical properties using spherical ball indentation and coupled finite element–element-free galerkin approach, Mechanics of Advanced Materials and Structures, vol. 23, pp. 832-843, 2016.
[10] Mahendra K Samal1, A Syed, RN Khatri and J Chattopadhyay, Study of plastically deformed region underneath the ball in indentation tests and evaluation of mechanical properties of materials through finite element simulation and a hybrid algorithm, journal of Mechanical Engineering Science, Vol. 0(0) 1–14, 2020.
[11] J. Ganesh Kumar, G.V. Prasad Reddy, Alphy George, A. Saikumaran, R. Mythili, P. Anil Kumar, Arup Das Gupta, M. Vasudevan, Evaluation of tensile properties of thermally aged 316LN stainless steel with varying nitrogen content using ABI technique, Materials Science & Engineering A,  806 (2021) 140819.
[12] Mahmoud Gholami, Hamidreza Zarei, Sohrab Astaraki, Experimental Investigation of Residual Strength of Aged Aircraft Structures, Journal of Aeronautical Engineering, Vol 19 (2):66-76; 2017.
[13] National Research council; aging of U.S Air force Aircraft final report National Academy Press, Washington, D.C, 1997.
[14] Venugopal, A.; Mohammad, R.; Koslan, M.F.S.; Sayd Bakar, S.R.; Ali, A. The Effect of Tropical Environment on Fatigue Failure in Royal Malaysian Airforce (RMAF) Aircraft Structure and Operational Readiness. Materials 2021, 14, 2414.
[15] THE FEASIBILITY OF USING X-RAY INDUCED ACOUSTIC COMPUTED TOMOGRAPHY FOR NON-DESTRUCTIVE TESTING OF AIRCRAFT STRUCTURAL, shareok.org, 2020.
[16]         K. Murty, M. Mathew, P. Miraglia, V. Shah, and F. M. Haggag, Non-Destructive Evaluation of deformation and fracture properties of materials using stress-Strain Microprobe, in MRS Proceedings, p. 327, 1997.
[17]         F. M. Haggag, In-Situ Measurements of Mechanical Properties Using Novel Automated Ball Indentation System, in Small Specimen Test Techniques Applied to Nuclear Reactor Vessel Thermal Annealing and Plant Life Extension, ed: ASTM International, pp. 27-27-18, 1993.
[18]         F. M. Haggag, R. K. Nanstad, J. T. Hutton, D. L. Thomas, and R. L. Swain, Use of automated ball indentation testing to measure flow properties and estimate fracture toughness in metallic materials, Applications of Automation Technology to Fatigue and Fracture Testing, ASTM STP, vol. 1092, pp. 188-208, 1990.
[19]         Test Methods for Automated Ball Indentation (ABI) Testing of Metallic Samples and Structures to Determine Tensile Properties and Stress-Strain Curves.
[20]         R. K. Pandey and S. Banerjee, Strain induced fracture in low strength steels, Engineering Fracture Mechanics, vol. 10, pp. 817-829, 1978.
[21]         R. O. Ritchie, W. L. Server, and R. A. Wullaert, Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels, Metallurgical Transactions A, vol. 10, pp. 1557-1570, 1979.
[22]         F. Haggag, W. Reuter, and W. Server, Recovery of Fracture Toughness of Irradiated Type 347 Stainless Steel Due to Thermal Stress Relief: Metallographic and Fractographic Studies, in Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, pp. 509-514, 1985.
[23]         F. Y. M. Haggag and G. E. Lucas, Determination of        lüders strains and flow properties in steels from hardness/microhardness tests, Metallurgical Transactions A, vol. 14, pp. 1607-1613, 1983.